| 1. | For the geometry depicted in figure 2-2, the lagrange multiplier is positive . 对于图2-2中所画的几何图形来说,拉格朗日乘子是正的。 |
| 2. | Enforce essential boundary conditions using lagrange multipliers 用拉氏乘子加强本征边界条件。 |
| 3. | Method of lagrange multipliers 拉格朗日乘子法 |
| 4. | Equilibrium model and augmented lagrange multiplier solution for congested traffic network 拥堵交通网络模型和增强拉格朗日乘子算法 |
| 5. | For the geometry depicted in figure 2 - 2 , the lagrange multiplier is positive 对于图2 - 2中所画的几何图形来说,拉格朗日乘子是正的。 |
| 6. | There is also a comprehensive treatment of optimality conditions , lagrange multiplier theory , and duality theory 这门课程也包括了对最适化条件,拉格朗日乘数理论,和对偶理论的综合论述。 |
| 7. | The lyapunov theorem and lasalle invariance principle are applied to optimization sub - problem in augmented lagrange multiplier method 参数不确定性和滞后特性在实际工业过程中广泛存在。 |
| 8. | By using the lagrange multiplier approach , the design procedure is formulated as solving the linear equation iteratively to obtain the desirable prototype filter coefficient vector 使用拉格朗日乘数方法,算法通过迭代求解线性方程来获得期望的原型滤波器系数矢量。 |
| 9. | The lagrange multiplier method using rate and distortion information is then applied to optimal allocates bitrate for each frame in fine granular scalability substreams 基于拉格朗日乘子法的最优化码率分配算法可以利用该模型中的率失真信息分配码率,在码率一定的条件下提供最好的视频效果。 |
| 10. | A neural network solver for the augmented lagrange multiplier ( alm ) method is provided , which has a wide application in the constrained nonlinear optimization propositions 神经网络动力学原理用于解决单目标的优化命题。带有等式约束和不等式约束的一般非线性优化问题,是单层优化的难点。 |